Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 11(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36429266

RESUMO

Exploring new sources of natural antioxidants is of great interest to edible oil producers, in line with the toxicological problems generated by the use of synthetic antioxidants. This study assesses the potential of lyophilized Pinot Noir grape pomace extract (GPE) to enhance the sunflower oil stability against thermo-oxidative damage compared to BHT during a prolonged exposure to convective heat at 185 °C. Oil thermo-oxidation was monitored based on specific indices such as peroxide value (PV), para-anisidine value (p-AV), inhibition of oil oxidation (IO), total oxidation (TOTOX) value, conjugated dienes and trienes (CDs, CTs), but also by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), where absorbance ratios A 3009 cm-1/A 2922 cm-1 (RI), A 3009 cm-1/A 2853 cm-1 (RII), A 3009 cm-1/A 1744 cm-1 (RIII) and RIV = A 1744 cm-1/A 2922 cm-1 (RIV) were investigated. GPE showed a significant inhibitory effect on oil thermo-oxidation and this response was concentration-dependent. Substantial decreases in the investigated indices, compared to the control without added antioxidants, were obtained after 4 h and 8 h of heat exposure of the 800 ppm GPE sample: PV (47%; 42%), p-AV (38%; 33%), IO (54%; 46%), TOTOX (41%; 37%), CDs (46%; 39%), CTs (44%; 29%). Oil exposure to heat resulted in changes in RI-RIV attributed to the reduction in the degree of unsaturation, in response to primary and secondary lipid oxidation. FTIR spectroscopy can be used to differentiate untreated and heat-treated oils based on the absorbance ratios. An inhibitory effect close to that of BHT was achieved by 500 ppm GPE, while a dose of 800 ppm provided greater protection against thermo-oxidation. Our results promote GPE as a natural additive to limit the thermo-oxidative damage of plant oils.

2.
Molecules ; 25(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287099

RESUMO

This research was conducted in order to establish the effectiveness of two freeze-dried extracts obtained from blueberry processing byproducts resulting from juice manufacturing compared to butylated hydroxytoluene (BHT) in delaying the lipid oxidation of sunflower oil subjected to high-temperature convective heating at 180 °C up to 12 h under simulated frying conditions. The fruits were harvested from spontaneous flora of two regions of Romania, Arieseni (Alba County) and Paltinis (Sibiu County) and the blueberry byproducts extracts (BBE) were noted according to the origin place as ABBE and PBBE. The progress of lipid thermo-oxidation was investigated in terms of peroxide value (PV), p-anisidine value (p-AV), the response of TBA-malondialdehyde interactions assessed by thiobarbituric acid (TBA) method, the total oxidation (TOTOX) value and inhibition of oil oxidation (IO). The recorded data highlighted that BBE exhibit a high inhibitory response on lipid thermo-oxidation. The inhibitory effect was concentration-dependent, thus, the degree of lipid oxidation was in reverse related to the BBE dose. The exposure of the oil samples supplemented with 800 ppm BBE (ABBE, PBBE) to a high-temperature heating for 12 h led to a significant decrease of the assessed indices compared to additives-free sunflower oil sample as follows: PV (46%; 45%), p-AV (21%; 17%), TOTOX (27%; 24%), TBA value (25%; 11%). Regarding the impact of the origin on the potential of BBE to inhibit the lipid oxidative degradation, it was noted that ABBE derived from blueberries grown in a region with a milder climate with moderate precipitations and higher temperatures showed a stronger inhibitory effect on lipid thermo-oxidation than PBBE. A moderate level of 500 ppm BBE inhibited the lipid oxidation similar to 200 ppm BHT. The reported results reveal that BBE represent efficient natural antioxidants that could be successfully applied to improve the thermo-oxidative stability of sunflower oil used in various high-temperature food applications.


Assuntos
Antioxidantes/química , Mirtilos Azuis (Planta)/química , Frutas/química , Óleo de Girassol/química , Compostos de Anilina/química , Hidroxitolueno Butilado/química , Temperatura Alta , Malondialdeído/química , Oxirredução/efeitos dos fármacos , Extratos Vegetais/química , Romênia , Tiobarbitúricos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...